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About me

� BA and PhD at the University of Cambridge
Computer Laboratory.

� Recent work has been on CORBA systems —
ways to make CORBA easier to use.

� Main author of omniORBpy

– but I’m trying very hard to be unbiased.

� AT&T Laboratories Cambridge is closing at the
end of April.

– Are you hiring?
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Introduction

1. What is a distributed system?

2. Why would we want one?

3. Distributed system technologies

4. XML-RPC

5. SOAP

6. CORBA
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What is a distributed system?

� A system in which not all parts run in the same
address space. . .

– and normally across more than one
computer.

� Complex

– concurrency

– latency

– nasty failure modes

– . . .
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So why bother?

� There’s more than one computer in the world.
� They solve some real problems

– Distributed users

– Load balancing

– Fault tolerance

– Distributed computation

– . . .

� It’s a challenge.
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Technologies

� Sockets
� RPC

– Sun RPC, DCE,XML-RPC , SOAP

� Single language distributed objects

– Java RMI, DOPY, Pyro

� Cross-language distributed objects

– DCOM, CORBA

� Message-oriented middleware, mobile agents,
tuple spaces, . . .
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RPC — Remote Procedure Call

� Model networked interactions as procedure
calls.

– Natural model for many kinds of application.

– Totally inappropriate for some things.

� Considered at least as early as 1976

– White, J.E.,A high-level framework for
network-based resource sharing,
Proceedings of the National Computer
Conference, June 1976.

� Requires: server addressing model, transport
protocol, data typemarshalling.
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Object Oriented RPC

� Obvious extension of RPC to support objects.

– Exactly analogous to the difference between
procedural and object oriented programming.

� In a remote method call, choice of object is
implicit in theobject reference.

� Object references are first class data types: they
can be sent as method arguments.

� Requires: object addressing model, transport
protocol, marshalling.
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What is XML-RPC?

� www.xmlrpc.com
� Very simple RPC protocol

– HTTP for server addressing and transport
protocol.

– XML messages for data type marshalling.

– Limited range of simple types.

� Stable specification

– Perhaps too stable.

� Implementations in many languages.

� Fork from an early version of SOAP. . .
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What is SOAP?

� It depends who you ask!

– Started life as an RPC protocol using
HTTP/XML.

– Moving away from that, towards a general
message framing scheme.

� As of SOAP 1.2, no longer stands for ‘Simple
Object Access Protocol’.

� www.w3c.org/2002/ws/

� A plethora of related specifications:

– XML Schema, WSDL, UDDI, . . .

� Specification and implementations in flux.
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Schemas, WSDL and UDDI

� XML Schema

– www.w3.org/XML/Schema

– Used in SOAP to define types.

� WSDL — Web Services Description Language

– www.w3.org/TR/wsdl

– Wraps up information about types, messages
and operations supported by a service, and
where to find the service.

� UDDI — Universal Description, Discovery and
Integration

– www.uddi.org

– Framework for describing, finding services.
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What is CORBA?

CommonObjectRequestBrokerArchitecture.
� i.e. a common architecture for object request

brokers.

� A framework for buildingobject oriented
distributed systems.

� Cross-platform, language neutral.

� Defines an object model, standard language
mappings, . . .

� An extensive open standard, defined by the
Object Management Group.

– www.omg.org
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Object Management Group

� Founded in 1989.
� The world’s largest software consortium with

around 800 member companies.

� Only providesspecifications, not
implementations.

� As well as CORBA core, specifies:

– Services: naming, trading, security, . . .

– Domains: telecoms, health-care, finance, . . .

– UML: Unified Modelling Language.

– MDA: Model Driven Architecture.

� All specifications are available for free.
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Python XML-RPC

� xmlrpclib

– www.pythonware.com/products/
xmlrpc/

– Part of Python standard library since 2.2.

– Very Pythonic and easy-to-use.
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Python SOAP

� SOAP.py

– pywebsvcs.sourceforge.net

– Similar in style to xmlrpclib.

– Not actively maintained.

� ZSI, Zolera SOAP Infrastructure

– pywebsvcs.sourceforge.net again.

– Most flexible and powerful option.

– Currently not particularly Pythonic.
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Python SOAP cont’d

� SOAPy

– soapy.sourceforge.net

– Supports WSDL, XML Schema

– Client side only

� 4Suite SOAP

– www.4suite.org

– Part of 4Suite Server.

– From the ‘SOAP as message framing’ camp.

– No RPC.
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Python CORBA

� omniORBpy

– www.omniorb.org/omniORBpy

– Based on C++ omniORB. Multi-threaded.

– Most complete and standards-compliant.

� orbit-python

– orbit-python.sault.org

– Based on C ORBit. Single-threaded.

� Fnorb

– www.fnorb.org

– Mostly Python, with a small amount of C.

– Dead for a long time.

– Newly open source (Python style).
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A simple example

1. Specification

2. XML-RPC implementation

3. SOAP implementation

4. CORBA implementation

5. Comparison
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Specification

� We want an ‘adder’ service with operations:

– add : add two integers.

– add_many : take a list of integers and return
their sum.

– accumulate : add a single argument to a
running total, return the new total.

– reset : reset the running total to zero.
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XML-RPC server
1 #!/usr/bin/env python
2 import operator, xmlrpclib, SimpleXMLRPCServer
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20 return xmlrpclib.True
21

22 adder = Adder_impl()
23 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", 8000))
24 server.register_instance(adder)
25 server.serve_forever()
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XML-RPC client

>>> import xmlrpclib
>>> adder = xmlrpclib.Server("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
<Boolean True at 819a97c>
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5
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XML-RPC request

POST / HTTP/1.0
Host: pineapple:8000
User-Agent: xmlrpclib.py/1.0b4 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 191

<?xml version=’1.0’?>
<methodCall>
<methodName>add</methodName>
<params>
<param>
<value><int>123</int></value>
</param>
<param>
<value><int>456</int></value>
</param>
</params>
</methodCall>
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XML-RPC response

HTTP/1.0 200 OK
Server: BaseHTTP/0.2 Python/2.2c1
Date: Thu, 28 Feb 2002 10:47:05 GMT
Content-type: text/xml
Content-length: 123

<?xml version=’1.0’?>
<methodResponse>
<params>
<param>
<value><int>579</int></value>
</param>
</params>
</methodResponse>
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XML-RPC notes

� We didn’t have to tell XML-RPC the names of
the functions, or their argument types.

– Dynamic dispatch/typing just like Python.

– Not necessarily a good thing in a distributed
system. . .

� XML-RPC has no equivalent ofNone.

– reset() has to return something.

25



SOAP server (SOAP.py)
1 #!/usr/bin/env python
2 import operator, SOAP
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 adder = Adder_impl()
22 server = SOAP.SOAPServer(("", 8000))
23 server.registerObject(adder)
24 server.serve_forever()
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SOAP client

>>> import SOAP
>>> adder = SOAP.SOAPProxy("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5
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SOAP request

POST / HTTP/1.0
Host: pineapple:8000
User-agent: SOAP.py 0.9.7 (actzero.com)
Content-type: text/xml; charset="UTF-8"
Content-length: 492
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<add SOAP-ENC:root="1">
<v1 xsi:type="xsd:int">123</v1>
<v2 xsi:type="xsd:int">456</v2>
</add>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
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SOAP response
HTTP/1.0 200 OK
Server: <a href="http://www.actzero.com/solution.html">SOAP.
py 0.9.7</a> (Python 2.2c1)
Date: Thu, 28 Feb 2002 11:07:38 GMT
Content-type: text/xml; charset="UTF-8"
Content-length: 484

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<addResponse SOAP-ENC:root="1">
<Result xsi:type="xsd:int">579</Result>
</addResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
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SOAP notes

� Dynamic dispatch/typing like XML-RPC.
� WSDL would allow us to specify function

names and types.

– Except that none of the Python SOAP
implementations support it fully.

� SOAPdoeshave the equivalent ofNone.

� The SOAP encoding is much bigger and more
complex than the XML-RPC encoding.
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CORBA interface

� Types and interfaces must be defined.

– CORBA Interface Definition Language, IDL.

– Serves as formal documentation for the
service, too.

– Can be avoided if there’s areally good
reason.

1 module Snake {
2 interface Adder {
3 typedef sequence<long> LongSeq;
4

5 long add(in long a, in long b);
6 long add_many(in LongSeq a_list);
7 long accumulate(in long a);
8 void reset();
9 };

10 };
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CORBA server
1 #!/usr/bin/env python
2 import sys, operator, CORBA, Snake__POA
3

4 class Adder_impl(Snake__POA.Adder):
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 orb = CORBA.ORB_init(sys.argv)
22 poa = orb.resolve_initial_references("RootPOA")
23 obj = Adder_impl()._this()
24 print orb.object_to_string(obj)
25 poa._get_the_POAManager().activate()
26 orb.run()
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CORBA client

>>> import CORBA, Snake
>>> orb = CORBA.ORB_init()
>>> obj = orb.string_to_object("IOR:0100...")
>>> adder = obj._narrow(Snake.Adder)
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
Traceback (most recent call last): ...
CORBA.BAD_PARAM: Minor: BAD_PARAM_WrongPythonType, COMPLETED_NO.
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10
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CORBA request/response

� CORBA uses an efficient binary format.

Request:

4749 4f50 0102 0100 3400 0000 0600 0000 GIOP....4.......
0300 0000 0000 0000 0e00 0000 fe25 177e .............%.~
3c00 0032 7500 0000 0000 0000 0400 0000 <..2u...........
6164 6400 0000 0000 7b00 0000 c801 0000 add.....{.......

Response:

4749 4f50 0102 0101 1000 0000 0600 0000 GIOP............
0000 0000 0000 0000 4302 0000 ........C...

� Tools like Ethereal (www.ethereal.com )
will pick it apart if you need to know what it
means.
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CORBA notes

� CORBA objects are addressed using an IOR,
Interoperable Object Reference.

– orb.object_to_string() converts an IOR
to a string form:
IOR:010000001400000049444c3a536e616b652f41646465723a312e3000
01000000000000004000000001010000110000006d792e7365637265742e
7365727665720000d2042000000057617320697420776f72746820747970
696e67207468617420494f5220696e3f

– Applications almost never deal with IORs
directly.

– Object references are normally received from
other objects, like the Naming service.

� The_narrow() call checked that the object
really was an Adder.

– Often no need to narrow. 35



Comparisons

� Like Python itself, XML-RPC and SOAP use
dynamic typing.

– Good for fast prototyping. . .

– . . . but can youreally trust your clients?

– Distribution turns a debugging issue into a
security issue.

– Robust code has to check types everywhere.

� CORBA uses static interfaces and typing.

– Have to specify interfaces in advance.

– CORBA runtime checks types for you.

– You have to document the interfaces anyway.

– Any provides dynamic typing if you need it.
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Comparisons

� XML-RPC and SOAP only specify transfer
syntax.

– Different implementations use different
APIs.

– Not an issue with Python XML-RPC since
everyone uses xmlrpclib.

– Definitely an issue with SOAP.

� CORBA has standard language mappings and
object model.

– Python source code is portable between
different Python ORBs.

– Object model and API is the same for all
languages.
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Comparisons

� XML-RPC and SOAP areprocedural

– Addressing on a per-server basis.

– No implicit state in function calls.

– Using explicit state in all calls can become
tricky.

� CORBA isobject-oriented

– Object references are first-class data types.

– Application entities can be modelled as
objects.

– Managing large numbers of objects can be
tricky.
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Comparisons

� CORBA uses a compact binary format for
transmission.

– Efficient use of bandwidth.

– Easy to generate and parse.

� XML-RPC and SOAP use XML text.

– Egregious waste of bandwidth.

– Easy-ish to generate, computationally
expensive to parse.

– ‘Easy’ for a human to read

– not this human!

� CORBA is 10–100 times more compact,
100–500 times faster.
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XML-RPC details

1. Types

2. Faults

3. Clients and servers

4. Extensions
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XML-RPC types

� Boolean

– xmlrpclib.True or xmlrpclib.False

� Integers

– Python int type.

� Floating point

– Python float type.

– Beware rounding errors!

� Strings

– Python string type.

– ASCII only.
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XML-RPC types

� Array

– Python sequence type (list, tuple) containing
‘conformable’ values.

� Struct

– Python dictionary with string keys,
‘conformable’ values.

� Date

– xmlrpclib.DateTime instance.

– Construct with seconds since epoch, time
tuple, ISO 8601 string.

� Binary

– xmlrpclib.Binary instance.

– Construct with string, read fromdata .
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XML-RPC faults

� Any server function can raise
xmlrpclib.Fault to indicate an error.

– Constructor takes integer fault code and a
human-readable fault string.

– Access withfaultCode andfaultString .

– Uncaught Python exceptions in server
functions are turned into Faults.

� The system may also raisexmlrpclib.

ProtocolError if the call failed for some
HTTP/TCP reason.
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XML-RPC clients

� Clients create a proxy to a server:

proxy = xmlrpclib.Server("http://some.host.name:[port]/[path]")

� Method names may contain dots:

a = proxy.foo()
b = proxy.bar.baz.wibble()

� https accepted if your Python has SSL support:

proxy = xmlrpclib.Server("https://some.host.name:[port]/[path]")
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XML-RPC servers

� SimpleXMLRPCServer included in Python 2.2:

server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", port))

– Usually specify empty string as host name.
Use specific interface name/address to
restrict calls to a particular interface.

� Register an instance

instance = MyServerClass()
server.register_instance(instance)

– All of instance’s methods available (except
those prefixed with ‘_’).

– Sub-instances for dotted method names.

– Only one instance can be registered.
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XML-RPC servers

� Instance with a dispatch method:

class MyServer:
def _dispatch(method, params):

print "The method name was", method
# Do something to implement the method...

� Register separate functions:

server.register_function(pow)

def doit(a, b): return a - b
server.register_function(doit, "subtract")
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XML-RPC extensions

� www.xmlrpc.com/directory/1568/
services/xmlrpcExtensions

� system.listMethods

– return list of available functions.

� system.methodSignature

– return the signature of the specified method,
as a list of strings.

� system.methodHelp

– return a help string for the specified method.

� system.multiCall

– call a list of methods in sequence, returning
all the results.
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CORBA details

1. IDL and its Python mapping

2. CORBA object model

3. Object Request Broker

4. Portable Object Adapter
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IDL practicalities
� IDL files must end with.idl (although in most

circumstances it doesn’t matter).

� Written in ISO 8859-1 (Latin-1). Identifiers must be
ASCII.

� Files are run through the C++ pre-processor

– #include , #define , // , /* */ , etc.

� Processed with anIDL compiler, e.g. omniidl, fnidl.

– Resulting instubsandskeletons.

� Case sensitive, but different capitalisations collide.

– e.g.attribute string String; is invalid.

� Scoping rules similar (but not identical) to C++.
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Simple types

IDL type Meaning Python mapping
boolean TRUE or FALSE int
octet 8-bit unsigned int
short 16-bit signed int
unsigned short 16-bit unsigned int
long 32-bit signed int
unsigned long 32-bit unsigned long
long long 64-bit signed long
unsigned long long 64-bit unsigned long
float 32-bit IEEE float float
double 64-bit IEEE float float
long double �80-bit IEEE float CORBA.long_double

50



Textual types

IDL Meaning Python
char 8-bit ISO 8859-1 character. string (length 1)
string String of ISO 8859-1 characters. string

– no embedded nulls.

– string< bound> is aboundedstring.

wchar Unicode character. unicode (length 1)
wstring Unicode string. unicode

– no embedded nulls.

– wstring< bound> is aboundedwstring.

� In fact, any code set can be used, not just ISO
8859-1 and Unicode.

� ORBs negotiate translation between code sets.
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Enumerations

� Simple list of identifiers.
� Only operation is comparison between values.

� Do not create a new naming scope!

IDL

module M {
enum colour { red, green, blue, orange };
enum sex { male, female };
enum fruit { apple, pear, orange }; // Clash!orange redefined!
const colour nice = red;
const colour silly = male; // Error!

};

Python

>>> choice = M.red # Not M.colour.red
>>> choice == M.red
1
>>> choice == M.green
0
>>> choice == M.male
0
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Structures

� Same idea as a C struct.
� Form a new naming scope.

� Structs can be nested.

IDL

module M {
struct Person {

string name;
unsigned short age;

};
};

Python
>>> me = M.Person("Duncan", 27)
>>> me.name
’Duncan’
>>> me.age = me.age + 1
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Unions

� Consist of adiscriminatorand avalue.
� Discriminator type can be integer, boolean,

enum, char.

� More options than shown here.

IDL

module M {
union MyUnion switch (long) {

case 1: string s;
case 2: double d;
default: boolean b;

};
};

Python

>>> u = M.MyUnion(s = "Hello")
>>> u.s
’Hello’
>>> u.d # Raises aCORBA.BAD_PARAMexception.
>>> u.d = 3.4 # OK. Discriminator is now 2.
>>> u.b = 1 # Discriminator is now6= 1 or 2.
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Typedefs

� Create an alias to a type.

module M {
typedef float Temperature;
struct Reading {

Temperature min;
Temperature max;

};
typedef Reading MyReading;

};

� Just use the aliased type from Python.

>>> r = M.Reading(1.2, 3.4)
>>> s = M.MyReading(5.6, 7.8)
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Sequences

� Variable length list of elements.
� Bounded or unbounded.

� Must be declared withtypedef .

IDL

module M {
typedef sequence<long> LongSeq;
typedef sequence<long,5> BoundedLongSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<sequence<short> > NestedSeq;

};
Note the space

Python

>>> ls = [1,2,3,4,5] # Valid as aLongSeq or BoundedLongSeq .
>>> ls = [1,2,3,4,5,6] # Too long forBoundedLongSeq .
>>> ls = (1,2,3,4,5) # Tuples are valid too.
>>> os = "abc\0\1\2" # octet and char map to Python string for speed.
>>> ns = [[1,2],[]] # Valid NestedSeq .
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Arrays

� Fixed length list of elements.
� Must be declared withtypedef .

IDL

module M {
typedef long LongArray[5];
typedef char CharArray[6];
typedef short TwoDArray[3][2];

};

Python
>>> la = [1,2,3,4,5] # Valid LongArray .
>>> la = (1,2,3,4,5) # Valid LongArray .
>>> ca = "ABCDEF" # octet and char map to string again.
>>> ta = [[1,2],[3,4],[5,6]]
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Exceptions

� Used to indicate an error condition.
� Almost the same as structures

– Except that they can be empty.

� Not actually types

– They cannot be used anywhere other than a
raises clause.

IDL

module M {
exception Error {};
exception Invalid {

string reason;
};

};

Python raise M.Error()
raise M.Invalid("Presentation too boring")
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System Exceptions
� All CORBA operations can raise system exceptions.

module CORBA {
enum completion_status {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};
exception name {

unsigned long minor;
completion_status completed;

};
};

� BAD_PARAM, COMM_FAILURE, OBJECT_NOT_EXIST, . . .

� Minor codes might tell you something useful:

>>> obj.echoString(123)
Traceback (innermost last):
...
omniORB.CORBA.BAD_PARAM: Minor: BAD_PARAM_WrongPythonType, COMPLETED_NO.
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TypeCode and Any

� An Any can contain data with any
IDL-declared type.

� A TypeCode tells you (and the ORB)
everything there is to know about a type.

IDL

module M {
struct Event {

long number;
any data;

};
};

Python

>>> a = CORBA.Any(CORBA.TC_long, 1234)
>>> a.value()
1234
>>> a.typecode().kind()
CORBA.tk_long
>>> a = CORBA.Any(CORBA.TypeCode("IDL:M/MyStruct:1.0"), s)
>>> a.typecode().kind()
CORBA.tk_struct
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Interfaces

� Define the interface of a (potentially) remote
object.

� Can contain

– type declarations

– exception declarations

– constant definitions

– operations

– attributes

� Support multiple inheritance.

� Create a valid IDL type.

61



Operations

� Parameters may bein , out , or inout .
� Single return value orvoid .

� Operations with more than one result value
return a tuple.

IDL

interface I {
void op1();
void op2(in string s, in long l);
void op3(in string s, out long l);
long op4(in string s, in long l);
long op5(in string s, inout long l);

};

Python

>>> o.op1()
>>> o.op2("Hello", 1234)
>>> l = o.op3("Hello")
>>> r = o.op4("Hello")
>>> r, l = o.op5("Hello", 2345)
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Exceptions

� Exceptions are declared with araises clause.
� System exceptions are implicit, and must not be

declared.

IDL

module M {
interface I {

exception NotPermitted { string reason; };
exception NoSuchFile {};
void deleteFile(in string name) raises (NotPermitted, NoSuchFile);

};
};

Python

try:
o.deleteFile("example.txt")
print "Deleted OK"

except M.I.NotPermitted, ex:
print "Not permitted because:", ex.reason

except M.I.NoSuchFile:
print "File does not exist"
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Oneway

� Operations may be declaredoneway .
� Best effort delivery — may never arrive!

� Client will probablynot block.

� No return value,out or inout parameters.

� No user exceptions.

� Client may still receive system exceptions.

IDL
interface I {

oneway void eventHint(in any evt);
};

Python
a = CORBA.Any(CORBA.TypeCode("IDL:Mouse/Position:1.0"),

Mouse.Position(100, 200))
o.eventHint(a) # Don’t care if the event is lost
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Attributes

� Not the same as Python attributes.
� Shorthand for a get/set pair of operations.

� Server may implement them however it likes.

� Cannot raise user exceptions.

� Use with care!

IDL
interface VolumeControl {

attribute float level;
readonly attribute string name;

};

Python

>>> o._get_level()
1.234
>>> o._set_level(2.345)
>>> o._get_name()
’left speaker’
>>> o._set_name("right speaker")
AttributeError: _set_name
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Inheritance

� Interfaces may be derived from any number of
other interfaces.

� Operations and attributes cannot be redefined.

IDL

interface A {
void opA();

};
interface B {

void opB();
};
interface C : A, B {

void opC(); // OK
void opA(); // Error: clash with inherited operation

};
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Object references

� Interfaces declare first-class types.
� Objects are passed by reference.

– Or, more correctly, objectreferencesare
passed by value.

IDL

interface Game {
...

};
interface GameFactory {

Game newGame();
};

Python >>> gf = # get a GameFactory reference from somewhere. . .
>>> game = gf.newGame()
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Object references

� A nil object reference is represented by Python
None.

� Derived interfaces can be used where a base
interface is specified.

� The implicit base of all interfaces isObject .

IDL

interface A { ... };
interface B : A { ... };
interface C {

void one(in A an_A); // AcceptsA or B
void two(in Object an_Object); // AcceptsA, B, or C

};
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Forward declarations

� Used to create cyclic dependencies between
interfaces.

� Full definition must be available.

– Some IDL compilers require that it is in the
same file.

IDL

interface I;
interface J {

attribute I the_I;
};
interface I {

attribute J the_J;
};
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Objects by value

� CORBA 2.3 addedvaluetype for objects
passed by value, rather than by reference.

� Like structs with single inheritance.

� Supports transmission or arbitrary graphs.

� Objects can have behaviour as well as state.

� Lots of nastiness:

– IDL no longer forms the only contract
between client and server.

– Mobile code security issues.

– Issues with the on-the-wire format.

� Not supported by any Python ORB yet.

70



IDL: Summary

� IDL defines:

– Interfaces of objects

– Types which may be transmitted

– Constants

� Forms the contract between client and server.

� Purely a declarative language.
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CORBA Object model

Client

Object

re
qu

es
t

re
pl

y

� What exactly is an ‘Object’?

� Often, a CORBA object is simply a
programming language object which is
remotely accessible.
� In general, an object’s existence may be

independent of:

– Clients holding references

– References elsewhere

– Operation invocations

– Implementation objects (servants)

– Server processes
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Terminology
Object reference

� A handle identifying an object.

� Contains sufficient information to locate the
object.

� The object may not exist

– at the moment

– ever.

� Refers to a single object.

� An object may have many references to it.

� Analogous to a pointer in C++.
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Terminology
Servant

� A programming language entityincarnating
one or more CORBA objects.

� Provides a concrete target for a CORBA object.

� Not a one-to-one mapping between CORBA
objects and servants

– A servant may incarnate more than one
object simultaneously.

– Servants can be instantiated on demand.

� Servants live within aserverprocess.
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Terminology
Client and Server

� A client is an entity which issues requests on an
object.

� A serveris a process which may support one or
more servants.

� Both are rôles, not fixed designations

– A program can act as a client one moment,
server the next

– or both concurrently.
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Object Request Broker

� The ORB brokers requests between objects.
� Responsible for

– object reference management

– connection management

– operation invocation

– marshalling

– . . .

� Public API specified inpseudo-IDL.

– Like real IDL, but not necessarily following
the language mapping rules.

� Not a stand-alone process—library code in all
CORBA applications.
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Object Request Broker

module CORBA { // Pseudo IDL
interface ORB {

string object_to_string (in Object obj);
Object string_to_object (in string str);

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InvalidName {};

ObjectIdList list_initial_services ();
Object resolve_initial_references (in ObjectId identifier)

raises (InvalidName);

boolean work_pending ();
void perform_work ();
void run ();
void shutdown (in boolean wait_for_completion);
void destroy ();
...

};
ORB ORB_init (inout arg_list argv, in string orb_identifier);

};
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Portable Object Adapter

� Objects are created within POAs.
� Within a POA, an object is identified with an

object id.

� Objects can beactivatedanddeactivated.

� A servantincarnatesan activated object.

� When an object is deactivated, the associated
servant isetherealized.

� There can be a many-to-one mapping between
objects and servants.

– i.e. a single servant can incarnate multiple
objects within a POA.

– or even within multiple POAs.
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POA Policies

� The behaviour of a POA is determined by its
policies:

– Threading model.

– Transient or persistent object life-span.

– One id per servant or multiple ids.

– User-provided object ids, or system-provided
ids.

– Use an active object map, default servant,
servant locator, or servant activator.

– Allow implicit activation or not.

79



Transient / Persistent Objects
� To clients, object references are opaque.

– So they cannot tell anything about the object’s
life cycle.

� Servers classify objects astransientor persistent.

� Transient objects

– Do not exist past the life of the server process.

– Good for callbacks, session management, etc.

� Persistent objects

– Can exist past the life of a server process.

– Good for long-lived services.

– The POA does not persist the state for you!
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POA Interface
module PortableServer {

...
native Servant;
...
interface POA {

...
ObjectId activate_object (in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id (in ObjectId id, in Servant p_servant)
raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object create_reference (in CORBA::RepositoryId intf)
raises (WrongPolicy);

Object create_reference_with_id (in ObjectId oid,
in CORBA::RepositoryId intf)

raises (WrongPolicy);

...
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POA Interface

...

ObjectId servant_to_id (in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant (in Object reference)
raises(ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id (in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

};
};
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POA use

# Create Game servant object
gservant = Game_i(self, name, game_poa)

# Activate it
gid = game_poa.activate_object(gservant)

# The POA now holds a reference to the servant.
del gservant

# Get the object reference
gobj = game_poa.id_to_reference(gid)

...

# Deactivate the object. Deletes the servant object,
# since the POA held the only reference to it.
game_poa.deactivate_object(gid)
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Servant definition
� To activate an object, you have to provide a

Pythonservantobject.

� The servant’s class must be derived from the
servantskeletonclass.

� For interfaceI in moduleM, the skeleton class is
M__POA.I (with two underscores).

– Only the top-level module name is suffixed:
the skeleton class forM::N::I is M__POA.N.I .

� The servant class must provide implementations
of all the IDL-defined operations, with the
correct argument types.
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Servant definition

IDL

module Snake {
interface Adder {

long accumulate(in long a);
void reset();

};
};

Python

import Snake__POA

class Adder_i (Snake__POA.Adder):
def __init__(self):

self.value = 0

def accumulate(self, a):
self.value = self.value + a
return self.value

def reset(self):
self.value = 0

servant = Adder_i()
poa.activate_object(servant)
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Standard CORBA services

� Naming

– Tree-based hierarchy of named objects.

– Supports federation.

� Notification

– Asynchronous event filtering, notification.

� Interface repository

– Run-time type discovery.

� Security

– Encryption, authentication, authorisation,
non-repudiation. . .

� Object trading, Transaction, Concurrency,
Persistence, Time, . . .
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Conclusion

1. My recommendations

2. General hints

3. Further resources

4. A big example for the keen
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My recommendations

� Use XML-RPC if

– your requirements arereally simple.

– performance is not a big issue.

� Use CORBA if

– object orientation and complex types are
important.

– interoperability is important.

– performance is important.

– CORBA’s services solve many of your
problems.
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My recommendations

� Use SOAP if

– you like tracking a moving ‘standard’ :-)

– you want to be buzzword-compliant.

� Use sockets if

– you need to stream binary data.

– you can’t affordany infrastructure.

� Use something else if

– it fits neatly with your application.

� Use a combination of things if

– it makes sense to do so.
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General hints

� Design for distribution.

– Think carefully about latency.

– Often better to send data which may not be
needed than to have fine-grained interfaces.

� Use exceptions wisely.

� Avoid generic interfaces (e.g. ones which use
CORBA Any) if possible.

� Don’t forget security requirements!

� Write your code in Python!
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Further resources

� ‘Programming Web Services with XML-RPC’,
by Simon St.Laurent, Joe Johnston and Edd
Dumbill. O’Reilly.

� ‘Advanced CORBA Programming with C++’,
by Michi Henning and Steve Vinoski.
Addison-Wesley.

– Don’t be put off by the C++ in the title —
most of the content is applicable to any
language.

– Besides, it’s fun to see how much harder
things are for C++ users.
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Further resources

� Python CORBA tutorial (expanded version of
this presentation)

www.omniorb.org/omniORBpy/tutorial/

� CORBA IDL to Python language mapping,
http://www.omg.org/technology/documents/

formal/python_language_mapping.htm

� CORBA specifications,
www.omg.org/technology/documents/
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Conclusion

� There are a lot of options out there.

� Despite the web services hype, CORBA is the
best solution to many real-world problems.

� The value of web services is not as a
replacement for CORBA, but an addition.

� Web services proponents could learn a lot from
CORBA, if only they looked.
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Example CORBA application

� This example demonstrates many design
patterns used in real CORBA applications.

� A noughts-and-crosses game:

– A single server, supporting any number of
games.

– Two players per game (obviously), plus any
number of spectators.

– Clients do not know the rules of the game.

� Terribly over-engineered for what it is.

� Full source code to the example available from
www.omniorb.org/omniORBpy/tutorial/
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Example application
Game Server

GameFactory

Game

Game

GameIterator

Game
Controller

Game
Controller

Player

Player

Spectator Spectator
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