
Distributed
Applications

with

Python
Dr Duncan Grisby
duncan@grisby.org

Outline

1. Introduction

2. A simple example

3. XML-RPC details

4. CORBA details

5. Comparisons and summary

2

About me

� BA and PhD at the University of Cambridge
Computer Laboratory.

� Recent work has been on CORBA systems —
ways to make CORBA easier to use.

� Main author of omniORBpy

– but I’m trying very hard to be unbiased.

� AT&T Laboratories Cambridge is closing at the
end of April.

– Are you hiring?

3

Introduction

1. What is a distributed system?

2. Why would we want one?

3. Distributed system technologies

4. XML-RPC

5. SOAP

6. CORBA

4

What is a distributed system?

� A system in which not all parts run in the same
address space. . .

– and normally across more than one
computer.

� Complex

– concurrency

– latency

– nasty failure modes

– . . .

5

So why bother?

� There’s more than one computer in the world.
� They solve some real problems

– Distributed users

– Load balancing

– Fault tolerance

– Distributed computation

– . . .

� It’s a challenge.

6

Technologies

� Sockets
� RPC

– Sun RPC, DCE,XML-RPC , SOAP

� Single language distributed objects

– Java RMI, DOPY, Pyro

� Cross-language distributed objects

– DCOM, CORBA

� Message-oriented middleware, mobile agents,
tuple spaces, . . .

7

RPC — Remote Procedure Call

� Model networked interactions as procedure
calls.

– Natural model for many kinds of application.

– Totally inappropriate for some things.

� Considered at least as early as 1976

– White, J.E.,A high-level framework for
network-based resource sharing,
Proceedings of the National Computer
Conference, June 1976.

� Requires: server addressing model, transport
protocol, data typemarshalling.

8

Object Oriented RPC

� Obvious extension of RPC to support objects.

– Exactly analogous to the difference between
procedural and object oriented programming.

� In a remote method call, choice of object is
implicit in theobject reference.

� Object references are first class data types: they
can be sent as method arguments.

� Requires: object addressing model, transport
protocol, marshalling.

9

What is XML-RPC?

� www.xmlrpc.com
� Very simple RPC protocol

– HTTP for server addressing and transport
protocol.

– XML messages for data type marshalling.

– Limited range of simple types.

� Stable specification

– Perhaps too stable.

� Implementations in many languages.

� Fork from an early version of SOAP. . .

10

What is SOAP?

� It depends who you ask!

– Started life as an RPC protocol using
HTTP/XML.

– Moving away from that, towards a general
message framing scheme.

� As of SOAP 1.2, no longer stands for ‘Simple
Object Access Protocol’.

� www.w3c.org/2002/ws/

� A plethora of related specifications:

– XML Schema, WSDL, UDDI, . . .

� Specification and implementations in flux.

11

Schemas, WSDL and UDDI

� XML Schema

– www.w3.org/XML/Schema

– Used in SOAP to define types.

� WSDL — Web Services Description Language

– www.w3.org/TR/wsdl

– Wraps up information about types, messages
and operations supported by a service, and
where to find the service.

� UDDI — Universal Description, Discovery and
Integration

– www.uddi.org

– Framework for describing, finding services.
12

What is CORBA?

CommonObjectRequestBrokerArchitecture.
� i.e. a common architecture for object request

brokers.

� A framework for buildingobject oriented
distributed systems.

� Cross-platform, language neutral.

� Defines an object model, standard language
mappings, . . .

� An extensive open standard, defined by the
Object Management Group.

– www.omg.org

13

Object Management Group

� Founded in 1989.
� The world’s largest software consortium with

around 800 member companies.

� Only providesspecifications, not
implementations.

� As well as CORBA core, specifies:

– Services: naming, trading, security, . . .

– Domains: telecoms, health-care, finance, . . .

– UML: Unified Modelling Language.

– MDA: Model Driven Architecture.

� All specifications are available for free.

14

Python XML-RPC

� xmlrpclib

– www.pythonware.com/products/
xmlrpc/

– Part of Python standard library since 2.2.

– Very Pythonic and easy-to-use.

15

Python SOAP

� SOAP.py

– pywebsvcs.sourceforge.net

– Similar in style to xmlrpclib.

– Not actively maintained.

� ZSI, Zolera SOAP Infrastructure

– pywebsvcs.sourceforge.net again.

– Most flexible and powerful option.

– Currently not particularly Pythonic.

16

Python SOAP cont’d

� SOAPy

– soapy.sourceforge.net

– Supports WSDL, XML Schema

– Client side only

� 4Suite SOAP

– www.4suite.org

– Part of 4Suite Server.

– From the ‘SOAP as message framing’ camp.

– No RPC.

17

Python CORBA

� omniORBpy

– www.omniorb.org/omniORBpy

– Based on C++ omniORB. Multi-threaded.

– Most complete and standards-compliant.

� orbit-python

– orbit-python.sault.org

– Based on C ORBit. Single-threaded.

� Fnorb

– www.fnorb.org

– Mostly Python, with a small amount of C.

– Dead for a long time.

– Newly open source (Python style).
18

A simple example

1. Specification

2. XML-RPC implementation

3. SOAP implementation

4. CORBA implementation

5. Comparison

19

Specification

� We want an ‘adder’ service with operations:

– add : add two integers.

– add_many : take a list of integers and return
their sum.

– accumulate : add a single argument to a
running total, return the new total.

– reset : reset the running total to zero.

20

XML-RPC server
1 #!/usr/bin/env python
2 import operator, xmlrpclib, SimpleXMLRPCServer
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20 return xmlrpclib.True
21

22 adder = Adder_impl()
23 server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", 8000))
24 server.register_instance(adder)
25 server.serve_forever()

21

XML-RPC client

>>> import xmlrpclib
>>> adder = xmlrpclib.Server("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
<Boolean True at 819a97c>
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5

22

XML-RPC request

POST / HTTP/1.0
Host: pineapple:8000
User-Agent: xmlrpclib.py/1.0b4 (by www.pythonware.com)
Content-Type: text/xml
Content-Length: 191

<?xml version=’1.0’?>
<methodCall>
<methodName>add</methodName>
<params>
<param>
<value><int>123</int></value>
</param>
<param>
<value><int>456</int></value>
</param>
</params>
</methodCall>

23

XML-RPC response

HTTP/1.0 200 OK
Server: BaseHTTP/0.2 Python/2.2c1
Date: Thu, 28 Feb 2002 10:47:05 GMT
Content-type: text/xml
Content-length: 123

<?xml version=’1.0’?>
<methodResponse>
<params>
<param>
<value><int>579</int></value>
</param>
</params>
</methodResponse>

24

XML-RPC notes

� We didn’t have to tell XML-RPC the names of
the functions, or their argument types.

– Dynamic dispatch/typing just like Python.

– Not necessarily a good thing in a distributed
system. . .

� XML-RPC has no equivalent ofNone.

– reset() has to return something.

25

SOAP server (SOAP.py)
1 #!/usr/bin/env python
2 import operator, SOAP
3

4 class Adder_impl:
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 adder = Adder_impl()
22 server = SOAP.SOAPServer(("", 8000))
23 server.registerObject(adder)
24 server.serve_forever()

26

SOAP client

>>> import SOAP
>>> adder = SOAP.SOAPProxy("http://server.host.name:8000/")
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
’Hello world’
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10
>>> adder.accumulate(2.5)
12.5

27

SOAP request

POST / HTTP/1.0
Host: pineapple:8000
User-agent: SOAP.py 0.9.7 (actzero.com)
Content-type: text/xml; charset="UTF-8"
Content-length: 492
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<add SOAP-ENC:root="1">
<v1 xsi:type="xsd:int">123</v1>
<v2 xsi:type="xsd:int">456</v2>
</add>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

28

SOAP response
HTTP/1.0 200 OK
Server: SOAP.
py 0.9.7 (Python 2.2c1)
Date: Thu, 28 Feb 2002 11:07:38 GMT
Content-type: text/xml; charset="UTF-8"
Content-length: 484

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xm
lsoap.org/soap/encoding/" xmlns:SOAP-ENC="http://schemas.xml
soap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/1999/X
MLSchema-instance" xmlns:SOAP-ENV="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.org/1999/XMLSchem
a">
<SOAP-ENV:Body>
<addResponse SOAP-ENC:root="1">
<Result xsi:type="xsd:int">579</Result>
</addResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

29

SOAP notes

� Dynamic dispatch/typing like XML-RPC.
� WSDL would allow us to specify function

names and types.

– Except that none of the Python SOAP
implementations support it fully.

� SOAPdoeshave the equivalent ofNone.

� The SOAP encoding is much bigger and more
complex than the XML-RPC encoding.

30

CORBA interface

� Types and interfaces must be defined.

– CORBA Interface Definition Language, IDL.

– Serves as formal documentation for the
service, too.

– Can be avoided if there’s areally good
reason.

1 module Snake {
2 interface Adder {
3 typedef sequence<long> LongSeq;
4

5 long add(in long a, in long b);
6 long add_many(in LongSeq a_list);
7 long accumulate(in long a);
8 void reset();
9 };

10 };

31

CORBA server
1 #!/usr/bin/env python
2 import sys, operator, CORBA, Snake__POA
3

4 class Adder_impl(Snake__POA.Adder):
5 def __init__(self):
6 self.value = 0
7

8 def add(self, a, b):
9 return a + b

10

11 def add_many(self, a_list):
12 return reduce(operator.add, a_list, 0)
13

14 def accumulate(self, a):
15 self.value += a
16 return self.value
17

18 def reset(self):
19 self.value = 0
20

21 orb = CORBA.ORB_init(sys.argv)
22 poa = orb.resolve_initial_references("RootPOA")
23 obj = Adder_impl()._this()
24 print orb.object_to_string(obj)
25 poa._get_the_POAManager().activate()
26 orb.run()

32

CORBA client

>>> import CORBA, Snake
>>> orb = CORBA.ORB_init()
>>> obj = orb.string_to_object("IOR:0100...")
>>> adder = obj._narrow(Snake.Adder)
>>> adder.add(123, 456)
579
>>> adder.add("Hello ", "world")
Traceback (most recent call last): ...
CORBA.BAD_PARAM: Minor: BAD_PARAM_WrongPythonType, COMPLETED_NO.
>>> adder.add_many([1,2,3,4,5])
15
>>> adder.add_many(range(100))
4950
>>> adder.accumulate(5)
5
>>> adder.accumulate(7)
12
>>> adder.reset()
>>> adder.accumulate(10)
10

33

CORBA request/response

� CORBA uses an efficient binary format.

Request:

4749 4f50 0102 0100 3400 0000 0600 0000 GIOP....4.......
0300 0000 0000 0000 0e00 0000 fe25 177e%.~
3c00 0032 7500 0000 0000 0000 0400 0000 <..2u...........
6164 6400 0000 0000 7b00 0000 c801 0000 add.....{.......

Response:

4749 4f50 0102 0101 1000 0000 0600 0000 GIOP............
0000 0000 0000 0000 4302 0000C...

� Tools like Ethereal (www.ethereal.com)
will pick it apart if you need to know what it
means.

34

CORBA notes

� CORBA objects are addressed using an IOR,
Interoperable Object Reference.

– orb.object_to_string() converts an IOR
to a string form:
IOR:010000001400000049444c3a536e616b652f41646465723a312e3000
01000000000000004000000001010000110000006d792e7365637265742e
7365727665720000d2042000000057617320697420776f72746820747970
696e67207468617420494f5220696e3f

– Applications almost never deal with IORs
directly.

– Object references are normally received from
other objects, like the Naming service.

� The_narrow() call checked that the object
really was an Adder.

– Often no need to narrow. 35

Comparisons

� Like Python itself, XML-RPC and SOAP use
dynamic typing.

– Good for fast prototyping. . .

– . . . but can youreally trust your clients?

– Distribution turns a debugging issue into a
security issue.

– Robust code has to check types everywhere.

� CORBA uses static interfaces and typing.

– Have to specify interfaces in advance.

– CORBA runtime checks types for you.

– You have to document the interfaces anyway.

– Any provides dynamic typing if you need it.

36

Comparisons

� XML-RPC and SOAP only specify transfer
syntax.

– Different implementations use different
APIs.

– Not an issue with Python XML-RPC since
everyone uses xmlrpclib.

– Definitely an issue with SOAP.

� CORBA has standard language mappings and
object model.

– Python source code is portable between
different Python ORBs.

– Object model and API is the same for all
languages.

37

Comparisons

� XML-RPC and SOAP areprocedural

– Addressing on a per-server basis.

– No implicit state in function calls.

– Using explicit state in all calls can become
tricky.

� CORBA isobject-oriented

– Object references are first-class data types.

– Application entities can be modelled as
objects.

– Managing large numbers of objects can be
tricky.

38

Comparisons

� CORBA uses a compact binary format for
transmission.

– Efficient use of bandwidth.

– Easy to generate and parse.

� XML-RPC and SOAP use XML text.

– Egregious waste of bandwidth.

– Easy-ish to generate, computationally
expensive to parse.

– ‘Easy’ for a human to read

– not this human!

� CORBA is 10–100 times more compact,
100–500 times faster.

39

XML-RPC details

1. Types

2. Faults

3. Clients and servers

4. Extensions

40

XML-RPC types

� Boolean

– xmlrpclib.True or xmlrpclib.False

� Integers

– Python int type.

� Floating point

– Python float type.

– Beware rounding errors!

� Strings

– Python string type.

– ASCII only.

41

XML-RPC types

� Array

– Python sequence type (list, tuple) containing
‘conformable’ values.

� Struct

– Python dictionary with string keys,
‘conformable’ values.

� Date

– xmlrpclib.DateTime instance.

– Construct with seconds since epoch, time
tuple, ISO 8601 string.

� Binary

– xmlrpclib.Binary instance.

– Construct with string, read fromdata .
42

XML-RPC faults

� Any server function can raise
xmlrpclib.Fault to indicate an error.

– Constructor takes integer fault code and a
human-readable fault string.

– Access withfaultCode andfaultString .

– Uncaught Python exceptions in server
functions are turned into Faults.

� The system may also raisexmlrpclib.

ProtocolError if the call failed for some
HTTP/TCP reason.

43

XML-RPC clients

� Clients create a proxy to a server:

proxy = xmlrpclib.Server("http://some.host.name:[port]/[path]")

� Method names may contain dots:

a = proxy.foo()
b = proxy.bar.baz.wibble()

� https accepted if your Python has SSL support:

proxy = xmlrpclib.Server("https://some.host.name:[port]/[path]")

44

XML-RPC servers

� SimpleXMLRPCServer included in Python 2.2:

server = SimpleXMLRPCServer.SimpleXMLRPCServer(("", port))

– Usually specify empty string as host name.
Use specific interface name/address to
restrict calls to a particular interface.

� Register an instance

instance = MyServerClass()
server.register_instance(instance)

– All of instance’s methods available (except
those prefixed with ‘_’).

– Sub-instances for dotted method names.

– Only one instance can be registered.

45

XML-RPC servers

� Instance with a dispatch method:

class MyServer:
def _dispatch(method, params):

print "The method name was", method
Do something to implement the method...

� Register separate functions:

server.register_function(pow)

def doit(a, b): return a - b
server.register_function(doit, "subtract")

46

XML-RPC extensions

� www.xmlrpc.com/directory/1568/
services/xmlrpcExtensions

� system.listMethods

– return list of available functions.

� system.methodSignature

– return the signature of the specified method,
as a list of strings.

� system.methodHelp

– return a help string for the specified method.

� system.multiCall

– call a list of methods in sequence, returning
all the results.

47

CORBA details

1. IDL and its Python mapping

2. CORBA object model

3. Object Request Broker

4. Portable Object Adapter

48

IDL practicalities
� IDL files must end with.idl (although in most

circumstances it doesn’t matter).

� Written in ISO 8859-1 (Latin-1). Identifiers must be
ASCII.

� Files are run through the C++ pre-processor

– #include , #define , // , /* */ , etc.

� Processed with anIDL compiler, e.g. omniidl, fnidl.

– Resulting instubsandskeletons.

� Case sensitive, but different capitalisations collide.

– e.g.attribute string String; is invalid.

� Scoping rules similar (but not identical) to C++.

49

Simple types

IDL type Meaning Python mapping
boolean TRUE or FALSE int
octet 8-bit unsigned int
short 16-bit signed int
unsigned short 16-bit unsigned int
long 32-bit signed int
unsigned long 32-bit unsigned long
long long 64-bit signed long
unsigned long long 64-bit unsigned long
float 32-bit IEEE float float
double 64-bit IEEE float float
long double �80-bit IEEE float CORBA.long_double

50

Textual types

IDL Meaning Python
char 8-bit ISO 8859-1 character. string (length 1)
string String of ISO 8859-1 characters. string

– no embedded nulls.

– string< bound> is aboundedstring.

wchar Unicode character. unicode (length 1)
wstring Unicode string. unicode

– no embedded nulls.

– wstring< bound> is aboundedwstring.

� In fact, any code set can be used, not just ISO
8859-1 and Unicode.

� ORBs negotiate translation between code sets.

51

Enumerations

� Simple list of identifiers.
� Only operation is comparison between values.

� Do not create a new naming scope!

IDL

module M {
enum colour { red, green, blue, orange };
enum sex { male, female };
enum fruit { apple, pear, orange }; // Clash!orange redefined!
const colour nice = red;
const colour silly = male; // Error!

};

Python

>>> choice = M.red # Not M.colour.red
>>> choice == M.red
1
>>> choice == M.green
0
>>> choice == M.male
0

52

Structures

� Same idea as a C struct.
� Form a new naming scope.

� Structs can be nested.

IDL

module M {
struct Person {

string name;
unsigned short age;

};
};

Python
>>> me = M.Person("Duncan", 27)
>>> me.name
’Duncan’
>>> me.age = me.age + 1

53

Unions

� Consist of adiscriminatorand avalue.
� Discriminator type can be integer, boolean,

enum, char.

� More options than shown here.

IDL

module M {
union MyUnion switch (long) {

case 1: string s;
case 2: double d;
default: boolean b;

};
};

Python

>>> u = M.MyUnion(s = "Hello")
>>> u.s
’Hello’
>>> u.d # Raises aCORBA.BAD_PARAMexception.
>>> u.d = 3.4 # OK. Discriminator is now 2.
>>> u.b = 1 # Discriminator is now6= 1 or 2.

54

Typedefs

� Create an alias to a type.

module M {
typedef float Temperature;
struct Reading {

Temperature min;
Temperature max;

};
typedef Reading MyReading;

};

� Just use the aliased type from Python.

>>> r = M.Reading(1.2, 3.4)
>>> s = M.MyReading(5.6, 7.8)

55

Sequences

� Variable length list of elements.
� Bounded or unbounded.

� Must be declared withtypedef .

IDL

module M {
typedef sequence<long> LongSeq;
typedef sequence<long,5> BoundedLongSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<sequence<short> > NestedSeq;

};
Note the space

Python

>>> ls = [1,2,3,4,5] # Valid as aLongSeq or BoundedLongSeq .
>>> ls = [1,2,3,4,5,6] # Too long forBoundedLongSeq .
>>> ls = (1,2,3,4,5) # Tuples are valid too.
>>> os = "abc\0\1\2" # octet and char map to Python string for speed.
>>> ns = [[1,2],[]] # Valid NestedSeq .

56

Arrays

� Fixed length list of elements.
� Must be declared withtypedef .

IDL

module M {
typedef long LongArray[5];
typedef char CharArray[6];
typedef short TwoDArray[3][2];

};

Python
>>> la = [1,2,3,4,5] # Valid LongArray .
>>> la = (1,2,3,4,5) # Valid LongArray .
>>> ca = "ABCDEF" # octet and char map to string again.
>>> ta = [[1,2],[3,4],[5,6]]

57

Exceptions

� Used to indicate an error condition.
� Almost the same as structures

– Except that they can be empty.

� Not actually types

– They cannot be used anywhere other than a
raises clause.

IDL

module M {
exception Error {};
exception Invalid {

string reason;
};

};

Python raise M.Error()
raise M.Invalid("Presentation too boring")

58

System Exceptions
� All CORBA operations can raise system exceptions.

module CORBA {
enum completion_status {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};
exception name {

unsigned long minor;
completion_status completed;

};
};

� BAD_PARAM, COMM_FAILURE, OBJECT_NOT_EXIST, . . .

� Minor codes might tell you something useful:

>>> obj.echoString(123)
Traceback (innermost last):
...
omniORB.CORBA.BAD_PARAM: Minor: BAD_PARAM_WrongPythonType, COMPLETED_NO.

59

TypeCode and Any

� An Any can contain data with any
IDL-declared type.

� A TypeCode tells you (and the ORB)
everything there is to know about a type.

IDL

module M {
struct Event {

long number;
any data;

};
};

Python

>>> a = CORBA.Any(CORBA.TC_long, 1234)
>>> a.value()
1234
>>> a.typecode().kind()
CORBA.tk_long
>>> a = CORBA.Any(CORBA.TypeCode("IDL:M/MyStruct:1.0"), s)
>>> a.typecode().kind()
CORBA.tk_struct

60

Interfaces

� Define the interface of a (potentially) remote
object.

� Can contain

– type declarations

– exception declarations

– constant definitions

– operations

– attributes

� Support multiple inheritance.

� Create a valid IDL type.

61

Operations

� Parameters may bein , out , or inout .
� Single return value orvoid .

� Operations with more than one result value
return a tuple.

IDL

interface I {
void op1();
void op2(in string s, in long l);
void op3(in string s, out long l);
long op4(in string s, in long l);
long op5(in string s, inout long l);

};

Python

>>> o.op1()
>>> o.op2("Hello", 1234)
>>> l = o.op3("Hello")
>>> r = o.op4("Hello")
>>> r, l = o.op5("Hello", 2345)

62

Exceptions

� Exceptions are declared with araises clause.
� System exceptions are implicit, and must not be

declared.

IDL

module M {
interface I {

exception NotPermitted { string reason; };
exception NoSuchFile {};
void deleteFile(in string name) raises (NotPermitted, NoSuchFile);

};
};

Python

try:
o.deleteFile("example.txt")
print "Deleted OK"

except M.I.NotPermitted, ex:
print "Not permitted because:", ex.reason

except M.I.NoSuchFile:
print "File does not exist"

63

Oneway

� Operations may be declaredoneway .
� Best effort delivery — may never arrive!

� Client will probablynot block.

� No return value,out or inout parameters.

� No user exceptions.

� Client may still receive system exceptions.

IDL
interface I {

oneway void eventHint(in any evt);
};

Python
a = CORBA.Any(CORBA.TypeCode("IDL:Mouse/Position:1.0"),

Mouse.Position(100, 200))
o.eventHint(a) # Don’t care if the event is lost

64

Attributes

� Not the same as Python attributes.
� Shorthand for a get/set pair of operations.

� Server may implement them however it likes.

� Cannot raise user exceptions.

� Use with care!

IDL
interface VolumeControl {

attribute float level;
readonly attribute string name;

};

Python

>>> o._get_level()
1.234
>>> o._set_level(2.345)
>>> o._get_name()
’left speaker’
>>> o._set_name("right speaker")
AttributeError: _set_name

65

Inheritance

� Interfaces may be derived from any number of
other interfaces.

� Operations and attributes cannot be redefined.

IDL

interface A {
void opA();

};
interface B {

void opB();
};
interface C : A, B {

void opC(); // OK
void opA(); // Error: clash with inherited operation

};

66

Object references

� Interfaces declare first-class types.
� Objects are passed by reference.

– Or, more correctly, objectreferencesare
passed by value.

IDL

interface Game {
...

};
interface GameFactory {

Game newGame();
};

Python >>> gf = # get a GameFactory reference from somewhere. . .
>>> game = gf.newGame()

67

Object references

� A nil object reference is represented by Python
None.

� Derived interfaces can be used where a base
interface is specified.

� The implicit base of all interfaces isObject .

IDL

interface A { ... };
interface B : A { ... };
interface C {

void one(in A an_A); // AcceptsA or B
void two(in Object an_Object); // AcceptsA, B, or C

};

68

Forward declarations

� Used to create cyclic dependencies between
interfaces.

� Full definition must be available.

– Some IDL compilers require that it is in the
same file.

IDL

interface I;
interface J {

attribute I the_I;
};
interface I {

attribute J the_J;
};

69

Objects by value

� CORBA 2.3 addedvaluetype for objects
passed by value, rather than by reference.

� Like structs with single inheritance.

� Supports transmission or arbitrary graphs.

� Objects can have behaviour as well as state.

� Lots of nastiness:

– IDL no longer forms the only contract
between client and server.

– Mobile code security issues.

– Issues with the on-the-wire format.

� Not supported by any Python ORB yet.

70

IDL: Summary

� IDL defines:

– Interfaces of objects

– Types which may be transmitted

– Constants

� Forms the contract between client and server.

� Purely a declarative language.

71

CORBA Object model

Client

Object

re
qu

es
t

re
pl

y

� What exactly is an ‘Object’?

� Often, a CORBA object is simply a
programming language object which is
remotely accessible.
� In general, an object’s existence may be

independent of:

– Clients holding references

– References elsewhere

– Operation invocations

– Implementation objects (servants)

– Server processes

72

Terminology
Object reference

� A handle identifying an object.

� Contains sufficient information to locate the
object.

� The object may not exist

– at the moment

– ever.

� Refers to a single object.

� An object may have many references to it.

� Analogous to a pointer in C++.

73

Terminology
Servant

� A programming language entityincarnating
one or more CORBA objects.

� Provides a concrete target for a CORBA object.

� Not a one-to-one mapping between CORBA
objects and servants

– A servant may incarnate more than one
object simultaneously.

– Servants can be instantiated on demand.

� Servants live within aserverprocess.

74

Terminology
Client and Server

� A client is an entity which issues requests on an
object.

� A serveris a process which may support one or
more servants.

� Both are rôles, not fixed designations

– A program can act as a client one moment,
server the next

– or both concurrently.

75

Object Request Broker

� The ORB brokers requests between objects.
� Responsible for

– object reference management

– connection management

– operation invocation

– marshalling

– . . .

� Public API specified inpseudo-IDL.

– Like real IDL, but not necessarily following
the language mapping rules.

� Not a stand-alone process—library code in all
CORBA applications.

76

Object Request Broker

module CORBA { // Pseudo IDL
interface ORB {

string object_to_string (in Object obj);
Object string_to_object (in string str);

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InvalidName {};

ObjectIdList list_initial_services ();
Object resolve_initial_references (in ObjectId identifier)

raises (InvalidName);

boolean work_pending ();
void perform_work ();
void run ();
void shutdown (in boolean wait_for_completion);
void destroy ();
...

};
ORB ORB_init (inout arg_list argv, in string orb_identifier);

};

77

Portable Object Adapter

� Objects are created within POAs.
� Within a POA, an object is identified with an

object id.

� Objects can beactivatedanddeactivated.

� A servantincarnatesan activated object.

� When an object is deactivated, the associated
servant isetherealized.

� There can be a many-to-one mapping between
objects and servants.

– i.e. a single servant can incarnate multiple
objects within a POA.

– or even within multiple POAs.

78

POA Policies

� The behaviour of a POA is determined by its
policies:

– Threading model.

– Transient or persistent object life-span.

– One id per servant or multiple ids.

– User-provided object ids, or system-provided
ids.

– Use an active object map, default servant,
servant locator, or servant activator.

– Allow implicit activation or not.

79

Transient / Persistent Objects
� To clients, object references are opaque.

– So they cannot tell anything about the object’s
life cycle.

� Servers classify objects astransientor persistent.

� Transient objects

– Do not exist past the life of the server process.

– Good for callbacks, session management, etc.

� Persistent objects

– Can exist past the life of a server process.

– Good for long-lived services.

– The POA does not persist the state for you!

80

POA Interface
module PortableServer {

...
native Servant;
...
interface POA {

...
ObjectId activate_object (in Servant p_servant)

raises (ServantAlreadyActive, WrongPolicy);

void activate_object_with_id (in ObjectId id, in Servant p_servant)
raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);

void deactivate_object (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object create_reference (in CORBA::RepositoryId intf)
raises (WrongPolicy);

Object create_reference_with_id (in ObjectId oid,
in CORBA::RepositoryId intf)

raises (WrongPolicy);

...

81

POA Interface

...

ObjectId servant_to_id (in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Object servant_to_reference (in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant (in Object reference)
raises(ObjectNotActive, WrongAdapter, WrongPolicy);

ObjectId reference_to_id (in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference (in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

};
};

82

POA use

Create Game servant object
gservant = Game_i(self, name, game_poa)

Activate it
gid = game_poa.activate_object(gservant)

The POA now holds a reference to the servant.
del gservant

Get the object reference
gobj = game_poa.id_to_reference(gid)

...

Deactivate the object. Deletes the servant object,
since the POA held the only reference to it.
game_poa.deactivate_object(gid)

83

Servant definition
� To activate an object, you have to provide a

Pythonservantobject.

� The servant’s class must be derived from the
servantskeletonclass.

� For interfaceI in moduleM, the skeleton class is
M__POA.I (with two underscores).

– Only the top-level module name is suffixed:
the skeleton class forM::N::I is M__POA.N.I .

� The servant class must provide implementations
of all the IDL-defined operations, with the
correct argument types.

84

Servant definition

IDL

module Snake {
interface Adder {

long accumulate(in long a);
void reset();

};
};

Python

import Snake__POA

class Adder_i (Snake__POA.Adder):
def __init__(self):

self.value = 0

def accumulate(self, a):
self.value = self.value + a
return self.value

def reset(self):
self.value = 0

servant = Adder_i()
poa.activate_object(servant)

85

Standard CORBA services

� Naming

– Tree-based hierarchy of named objects.

– Supports federation.

� Notification

– Asynchronous event filtering, notification.

� Interface repository

– Run-time type discovery.

� Security

– Encryption, authentication, authorisation,
non-repudiation. . .

� Object trading, Transaction, Concurrency,
Persistence, Time, . . .

86

Conclusion

1. My recommendations

2. General hints

3. Further resources

4. A big example for the keen

87

My recommendations

� Use XML-RPC if

– your requirements arereally simple.

– performance is not a big issue.

� Use CORBA if

– object orientation and complex types are
important.

– interoperability is important.

– performance is important.

– CORBA’s services solve many of your
problems.

88

My recommendations

� Use SOAP if

– you like tracking a moving ‘standard’ :-)

– you want to be buzzword-compliant.

� Use sockets if

– you need to stream binary data.

– you can’t affordany infrastructure.

� Use something else if

– it fits neatly with your application.

� Use a combination of things if

– it makes sense to do so.

89

General hints

� Design for distribution.

– Think carefully about latency.

– Often better to send data which may not be
needed than to have fine-grained interfaces.

� Use exceptions wisely.

� Avoid generic interfaces (e.g. ones which use
CORBA Any) if possible.

� Don’t forget security requirements!

� Write your code in Python!

90

Further resources

� ‘Programming Web Services with XML-RPC’,
by Simon St.Laurent, Joe Johnston and Edd
Dumbill. O’Reilly.

� ‘Advanced CORBA Programming with C++’,
by Michi Henning and Steve Vinoski.
Addison-Wesley.

– Don’t be put off by the C++ in the title —
most of the content is applicable to any
language.

– Besides, it’s fun to see how much harder
things are for C++ users.

91

Further resources

� Python CORBA tutorial (expanded version of
this presentation)

www.omniorb.org/omniORBpy/tutorial/

� CORBA IDL to Python language mapping,
http://www.omg.org/technology/documents/

formal/python_language_mapping.htm

� CORBA specifications,
www.omg.org/technology/documents/

92

Conclusion

� There are a lot of options out there.

� Despite the web services hype, CORBA is the
best solution to many real-world problems.

� The value of web services is not as a
replacement for CORBA, but an addition.

� Web services proponents could learn a lot from
CORBA, if only they looked.

93

Example CORBA application

� This example demonstrates many design
patterns used in real CORBA applications.

� A noughts-and-crosses game:

– A single server, supporting any number of
games.

– Two players per game (obviously), plus any
number of spectators.

– Clients do not know the rules of the game.

� Terribly over-engineered for what it is.

� Full source code to the example available from
www.omniorb.org/omniORBpy/tutorial/

94

Example application
Game Server

GameFactory

Game

Game

GameIterator

Game
Controller

Game
Controller

Player

Player

Spectator Spectator

95

